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A flexible iterative algorithm is presented for optimizing gradient and radio frequency
coils for MRI. It is based on a model using discrete current elements and direct Biot-
Savart calculation of the fields. An error function is defined over a region of interest (ROI)
and is minimized by conjugate gradient descent. The choice of error function allows op-
timization of the field uniformity, the inductance, and the efficiency of the coil in any
combination. Neither the coil nor the ROI is restricted to any particular geometry. A 40-
turn cylindrical z-gradient coil of radius a and length 44, designed for a ROI of radius
0.7a and length 2a has an average error in the gradient fields generated of 0.85%, an
inductance of 0.014¢ mH /cm, and an efficiency of 6.65a 2 Gem /A, A 16-turn birdcage-
like RF coil of radius 5 c¢m, designed for a ROI of radius 4 cm has an average error of
0.79%. @ 1991 Academic Press, Inc.

INTRODUCTION

In several aspects of magnetic resonance imaging, magnetic fields with a specified
distribution in space are required. These include gradient fields, the main static field,
shim fields, and RF fields. In the past, coils made to produce such fields have been
designed by analytic methods. Romeo and Hoult (/) used a spherical harmonic ex-
pansion of the fields to produce coils that approximate the lower order harmonics.
These were then combined to approximate the desired fields. Compton (2) defined
an error function to describe the uniformity of the gradient fields and used a least
squares approach to derive a current distribution that would minimize this function.'

* Candidate for the combined MD and PhD degrees in the Medical Scientist Training Program at the
Medical College of Wisconsin.

! This work was brought to our attention by one of the referees and describes a scheme for gradient coil
optimization that is similar to the one presented here. An error function that is identical to our Eq. [1] is
used to describe the uniformity of the gradient field, but this function is minimized by a different technique.
A current is assigned to every point on the surface of the coil, and the fields generated are expressed as a
function of these currents. Because the fields are a linear function of these currents, the error function can
be minimized by a least squares approach without iteration. The optimized current distribution must then
be approximated by discrete current elements. We chose an iterative approach which adjusts the positions
of discrete current elements for two reasons. First, the coil that is constructed should give almost exactly
the fields that are calculated because there is no step that involves the approximation of a current distribution
with discrete current elements. This is especially important for configurations with smaller numbers of
current elements for which the approximation of a current distribution would be less accurate. Also, for
configurations like cylindrical transverse gradients, it is more straightforward using our technique to guarantee
the existence of current return paths for all current elements and to include them in the field calculations.
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For cylindrical geometries, Turner (3) inverted a Fourier-Bessel expansion of the
fields to derive a continuous current distribution flowing over a cylinder that would
produce the desired fields on the surface of the region of interest (ROI ). More recently,
Turner (4) and Schweikert et al. (5) have introduced methods using Lagrange mul-
tipliers that can minimize the inductance or the power-to-field ratio and simultaneously
guarantee that the fields will equal the desired fields at a number of points in the ROI.

These techniques have some theoretical and practical limitations: (a) In the methods
that use Lagrange multipliers, the number of adjustable parameters in the coil must
equal or exceed the number of points in the ROI at which the fields are specified. If
the number of points at which the fields are specified is too small, then the field
between these points can deviate greatly from the desired fields. This presents a problem
for coils with smaller numbers of adjustable parameters. (b) For those methods which
derive a distributed or continuous current distribution, such as those of Compton (2)
and Turner (3, 4), the current distribution must be approximated by discrete wires
or current paths. For small numbers of wires, the approximation to the calculated
current distribution is poor, resulting in errors in the fields. (c¢) For current distributions
expressed in terms of continuous functions, it is difficult to place explicit constraints
on the overall size of the coil. This is important because the size of the coil is often a
primary consideration in the coil design.

Presented here is an iterative algorithm for optimizing coils that is based on a
specified number of discrete current elements and involves direct Biot-Savart calcu-
lation of the fields. We chose this approach to coil design for several reasons: (a) The
number of points that describe the ROI can be chosen arbitrarily and is not required
to be smaller than the number of current elements. (b) Because we carry out the Biot—
Savart calculation of the fields from discrete current elements, the actual fields produced
resemble the calculated fields very closely for any number of wires. (¢) Arbitrary
constraints can easily be placed on the dimensions of the coil, and on the locations
of individual current elements. (d) Because both the efficiency and the inductance of
coils are largely dependent upon the number of turns of wire present, it is useful to
ask what is the best possible coil configuration with a given number of turns. (e) By
suitable choice of error functions, it is possible to optimize any combination of field
uniformity, inductance, and efficiency. (f) The method can in principle be applied to
any configuration in which the currents can be described by a number of discrete
current elements.

In our approach, an error function is defined over a set of points in the ROI and
is a function of the positions of the current elements. This error function is then
minimized by conjugate gradient descent (6). In order to optimize inductance and/
or efficiency in addition to field uniformity, expressions for these quantities are in-
corporated into the error function.

Conjugate gradient descent is an established method for finding minima in multi-
dimensional spaces, and it displays rapid (quadratic) convergence in the vicinity of a
minimum. It has been used previously in MRI for the optimization of RF pulses by
Mao et al. (7) and others.

Analyses of the cylindrical z-gradient coil, and a birdcage-like RF coil have been
carried out using this technique, yielding designs which give very homogeneous gradient
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and REF fields over large ROIs. For the z-gradient coil, combinations of gradient field
uniformity, inductance, and efficiency have been optimized.

This is a theoretical paper which introduces our techniques for optimizing coils.
We have built a z-gradient coil and an RF coil and have tested the accuracy of our
calculations. We are currently designing and implementing new coils including cylin-
drical transverse and biplanar gradient coils, and will report on these and their appli-
cations in future publications.

ALGORITHM

The general algorithm is given here, and applications to the cylindrical z-gradient
coil and an RF coil are described in the next sections.

If M points are chosen in the ROI over which to optimize the field, and initial
conditions are set for N current elements, then an error function £ can be defined as

M —
E= Z (Bm_ m)z: []]
m=
where B,, is the desired field at the ith point in the ROIL, and B,, is the calculated field
at that point. B,, can be specified explicitly, or if a uniform field is desired, it can be
reset to the average field after each iteration.
Let P; be an N-dimensional vector representing the positions of the N current ele-
ments after the /th iteration. Let D; be the direction of search at the ith iteration, and
G; the gradient of E with respect to P;. P is adjusted as follows (6),
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P;,; = P, + aD;. [5]

At each iteration, a is chosen to minimize E along the direction of search. Thus
the problem becomes one of minimizing £ as a function of a single variable («). This
is carried out as follows: Starting with the « of the previous iteration, the error E is
calculated, and the coeflicient « is successively doubled or halved until the minimum
of E is passed. The nearest three (o, F) pairs are then fit with a second order polynomial,
and the calculated minimum is used to determine c.

The gradient G is obtained by direct Biot-Savart calculation at each iteration. The
nth component of this gradient is the derivative of £ with respect to the position of
the nth wire:

oE o .

Gn=a;"=22(3m—3m)a—&- [6]

m=]|

An average percent error (AE) in the fields over the ROI is defined as
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4 re
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and is the quantity that is presented in the examples below because its meaning is
intuitive.

For optimizing field uniformity and inductance simultaneously for a given number
of turns of wire, the error function is replaced by E X L, where E is the error function
of Eq. [1], and L is the inductance of the coil. This new error function is minimized
by the conjugate gradient descent method described above. The error function and
its derivatives are again obtained by Biot-Savart calculation. The inductance is cal-
culated by integrating the magnetic flux through each loop due to itself and all other
loops in the coil.

Our choice of error functions for the optimization of field uniformity and inductance
is somewhat arbitrary, and implies that £ and L are of equal importance. If an unequal
weighting of £ and L is desired, one could minimize E(1 + L) where ¢ is a selectable
parameter, or E" X L™, where n and m are selectable.

In our experience, the algorithm converges to a stable minimum of the error function
in all cases. In some cases, however, this minimum is not the local minimum that is
closest in the parameter space to the initial configuration. The reason for this is that
the gradient of the error function is large at the beginning of the search, and the step
size « is relatively coarse. This allows the configuration to jump into adjacent local
minima. If the nearest local minimum is desired, a steepest descent (5) method with
small step size can be used for the first few iterations. In this method, the search
direction is directly down the gradient —G;, and the step size is fixed. For the z-
gradient coil application, the closest local minimum usually gives the lowest error
function after convergence and is the configuration that is reported. For the RF coil
application, more than one local minimum was never observed.

The algorithm generally converges to a minimum in 20-200 iterations. Computing
time for 200 iterations for a 24-turn z-gradient coil, optimizing E X L, was 4 min.
Calculations were performed on a NeXT computer.

Z-GRADIENT COIL

This algorithm has been applied to the design of cylindrical z-gradient coils. Two
important design parameters for such coils are the uniformity of the gradient field and
the inductance. For a given size coil, the inductance is strongly dependent upon the
number of turns of wire used. This dependence lies between linear and quadratic,
depending upon the spacing between the wires. Therefore, it is useful to ask what is
the best uniformity that can be achieved using a given number of turns. This is a
problem that can be addressed by our approach.

The ROI used was a cylinder of radius 0.7 @ and length 2 a where a is the radius
of the coil. The current distribution was composed of coaxial current loops and was
assumed to be antisymmetric about z = (. The fields were only calculated in one
quadrant of the ROI because of the symmetry of the coil. The gradient fields were
calculated at 48 points in the ROI, at spacings of 0.1 a in the radial (r) direction, and
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TABLE 1
Average Error in Gradient Field for Cylindrical Z-Gradient Coils

Average error

Number of turns Length of coil (%)
16 320a 5.17
24 305a 3.22
32 353a 1.36
40 384a 0.86
48 3.60 a 0.77

0.2 a in the axial (z) direction. The error functions were weighted by the radius of
the points in order to provide volume-weighted errors.

The variables to be adjusted were the positions along the z-axis of N current loops.
Initially, the loops were evenly spaced from z = 0.5 a to z = 1.5 a, and they were
constrained to 0 < z < 2 a. At the end of each iteration, the value of the average
gradient was calculated, and the desired uniform gradient was reset to this value. Each
turn carries one unit of current.

The minimized AE was found to be strongly dependent upon the number of turns
of wire specified, as shown in Table 1. Thus, there is a strong trade off between uni-
formity and inductance that must be taken into account for each application. Also
shown in Table | is the overall length of the coils (maximum separation between
current loops) in units of @, the radius of the coil. Figure 1 shows the wire distribution
and the ROI for the 24-turn configuration.

For a coil with a given number of turns, the product of E and the inductance can
be minimized explicitly. For the inductance calculations, the wire was assumed to
have a radius of 0.02 a. When E X L is minimized, the resultant coils have an AE

: b

©) I ' 9)

FIG. 1. Wire positions and ROI for 24-turn cylindrical z-gradient coil designed using the conjugate gradient
descent algorithm. ROl is |z| < a, and r < 0.7 a, and is shaded. Number in parentheses indicates the
number of turns at that location. Other wires are single turn. Wire positions (z/a): 0.442, 0.798, 0.988,
nine wires from 1.466 to 1.524.
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that is 0-12% greater, but an inductance that is 21-38% lower than coils optimized
for field uniformity alone. Results for various numbers of wires are shown in Fig. 2.

The efficiency, here defined as gradient per unit current is another important design
parameter that can be incorporated into the optimization scheme. In the algorithm
presented above for the z-gradient coil, the error function E was minimized without
regard to efficiency, and the desired gradient was reset after each iteration to the cal-
culated average gradient. This approach was taken because the gradient strength at
which the error will be a minimum is not known beforehand.

The efficiency of the coil can be taken into account in several different ways. One
way is to set it explicitly by fixing the desired gradient at a given value. Because the
currents in the turns are fixed, specifying the desired gradient is equivalent to specifying
the efficiency. This results in a coil with the best uniformity consistent with the specified
efficiency. Another way is to use the AE (Eq. [7]) as the error function for the search.
The AE is the error in the gradient fields divided by the desired gradient. If it is
minimized while the magnitude of the desired gradient is allowed to vary, then the
product of uniformity and efficiency is maximized. This is an arbitrary weighting of
uniformity and efficiency, and as in the minimization of £ X L, other weightings are
easily specified. The procedure is identical except that the gradient used to determine
the direction of search is the gradient of the AE with respect to the wire positions.

Both of these approaches have been taken, and the results are shown in Fig. 3. The
curve represents the AE of configurations for which the efficiency was fixed at various
values. The AE is also shown for configurations in which E and AE were minimized
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FIG. 2. Average error and inductance for z-gradient coils optimized for field uniformity only (closed
symbols) and optimized for field uniformity and inductance (corresponding open symbols). Average error
is defined by Eq. [7]. The ROl is |z| < a, and r < 0.7 a. Inductance is shown for coils of radius 0.5 m.

FiG. 3. Average crror vs efficiency for 24-turn z-gradient coils designed using the conjugate gradient
descent algorithm. Average error is defined by Eq. [7]. Efficiency is defined as gradient per unit current,
and is given for coils of radius 0.5 m. The ROl is |z| < a, and r < 0.7 a. Triangle, square, and open circles
are coils designed respectively by minimizing: £ while the efficiency floats, AE while the efficiency floats,
and E with the efficiency fixed at the values shown.
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while the efficiency was allowed to “float.” Note that when the AE is minimized, the
algorithm settles in on a configuration with higher efficiency than when E is minimized.
In general the configurations with higher efficiencies were more compact, but in all
cases the loops were at z < 1.7 a.

Gradient coils in which the turns of wire are driven in parallel, with varying currents
in each turn, can also be considered. Such configurations have the potential for much
lower inductance, but introduce the practical problem of constructing a coil with
unequal currents. If the coil is wound in parallel, and resistors are used to limit the
current in each turn, then a very large amount of heat must be dissipated by these
resistors. However, if a configuration with a very small number of turns can be found
that provides acceptable field uniformity, then it becomes possible to consider driving
each wire or group of wires with a separate amplifier, thus avoiding the problem of
dividing the currents.

For parallel coil configurations, the current carried by each wire can be adjusted by
our algorithm. The algorithm is identical except that the gradient of [ is calculated
with respect to the currents, Optimization of the positions and currents of the wires
can be done simultaneously.

In most of the configurations designed by our method, many of the turns of wire
clustered at a location around z = 1.5 a. This suggests a dual amplifier configuration
in which a high current amplifier is used to drive one or a few turns around z = 1.5
a, and a lower current amplifier drives other turns to increase the uniformity of the
gradient.

Coil configurations with fixed but unequal currents, and also configurations for
which the currents were allowed to vary are described in Table 2. For coil A the current
ratios were fixed while the positions were allowed to move. For coils B-D only the
current in the last turn was allowed to vary and for coil E, all the currents were allowed
to vary. Coils A-D can be driven with two amplifiers as described above. It is thus
possible with very few turns (and thus very low inductance) to design coils with good
field uniformity.

CONSTANT-CURRENT BIRDCAGE COIL

Our technique has also been applied to the optimization of RF coils that are similar
in principle to the birdcage design of Hayes et al. (8). It has been shown (9-12) that
an axial current flow over the surface of a cylinder that varies sinusoidally with the
azimuthal angle will produce a uniform magnetic field inside an infinitely long cylinder.
For MRI, this is usually approximated by a finite number of equally spaced axial
wires, each carrying a current proportional to the sine of the angle between the uniform
field direction and a vector from the axis of the cylinder to the wire. A notable practical
realization of this concept is the conventional birdcage coil (CBC) (8).

As the number of wires increases, the approximation to an ideal current distribution
improves. Sotgiu and Hyde ( /3) have analyzed the uniformity of the field as a function
of the number of wires.

We inquire here about a different approximation to the ideal current distribution.
With the coil wound in series, the current in each wire is the same, and we adjust the
azimuthal angle ¢ for each wire. The term “uniform current birdcage (UCB) coil” is
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TABLE 2

Average Error in Gradient Field for Parallel-Wound Z-Gradient Coils

Number Current Average error
of turns ratios Wire positions (z/a) (%)

A 8 1:1:1:9 0.437, 0.792, 0.970, 1.491 3.14

B 6 1:1:5.76 0.595, 0.981, 1.514 532

C 8 1:1:1:9.71 0.426, 0.794, 0.894, 1.466 2.59

D 10 LLLELLLT 0.414, 0.748, 0.886, 1.079, 1.534 1.71

E 6 1:1.36:7.19 0.572, 0.973, 1.545 5.09

introduced for this structure. Bolinger ef al. (14) have described a UCB coil with
spacings between wires determined by a geometrical construction in which intervals
of equal length along a diameter are projected onto the circumference. This structure
will be referred to as BB.

The rationale for studying the UCB is that it can provide additional options for the
optimization of the free space Q. For very small coils at 1.5 T, for larger coils at lower
fields, and for coils intended for use with nuclei of low magnetogyric ratio, body losses
do not necessarily dominate coil losses. In these situations the highest possible free
space Q commensurate with a specified degree of RF field homogeneity is required.
The Qs of CBCs are not very high in our experience, and Qs of UCBs can be higher.
Often the free space Qs are determined, at least in part, by nonideal characteristics of
the capacitors (both dielectric loss and joulean losses in the plates of the capacitors).
The higher inductance of a series-wound coil would reduce the capacitance required
to resonate at a given frequency. The UCB thus provides additional design flexibility
in management of the capacitive elements of the resonant structure.

In this application, the parameters to be adjusted are the azimuthal position of the
axial wires. The wires are initially spaced to approximate a sinusoidal distribution as
in the BB, and are assumed infinitely long. The points that define the ROI were spaced
5° apart in the ¢ direction, and 0.1 g apart in the radial direction. The radial extent
of the ROI was 0.8 a. Again, the error function was weighted by the radius of the
points to give volume-weighted errors. The calculated field on axis was considered to
be the desired field.

The optimized configurations for 4- to 16-turn UCBs are given in Table 3 for a
ROI of radius 0.8 g. The dependence of the AE upon the number of wires is shown
in Fig. 4. Also shown in Fig. 4 for comparison are the errors for CBCs and BBs with
the same numbers of wires. For the CBCs, the wires were evenly spaced, and the
currents were assumed to vary sinusoidally. For the BBs, each wire carried the same
current, and the wire positions were a geometrical approximation ( /4) of a sinusoidal
distribution. For this ROI and this range of numbers of wires, the UCBs have slightly
better field homogeneity than the CBCs, and the BB:s.

DISCUSSION

This conjugate gradient descent algorithm has been shown to produce cylindrical
z-gradient coils and constant current birdcage coils with very good field uniformity
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TABLE 3

Wire Positions and Average Errors for Uniform
Current Birdcage Coils

Number Average error
of wires Wire positions in degrees (%)
4 25.39 11.68
8 13.40, 45.72 3.69
12 9.14, 28.89, 54.58 1.52
16 6.94, 21.51, 37.50, 59.70 0.79

over large ROIs. It has also been shown to allow for the optimization of inductance,
efficiency, and parallel configurations.

An attractive feature of this algorithm is its flexibility. The desired fields can be
prescribed arbitrarily over a ROI of any shape by specifying the set of points over
which the fields are calculated and optimized. A field that varies irregularly can be
prescribed by directly assigning a numerical value for the desired field at each point.
Constraints on the positions of current elements are also easily applied. If a current
element is moved because of a constraint that the designer wishes to apply, the algorithm
will attempt to compensate for such arbitrary movements in further iterations. For
instance, to guarantee that current elements do not overlap, the program can check
for the overlap after each iteration, and directly move the elements apart. Similarly,
limits can be placed on the positions of the current elements to restrict the overall
dimensions of the coil. Because we use a discrete current model, and direct Biot-
Savart field calculations, our method is very general. We feel that our method has
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FIG. 4. Average error vs number of wires for uniform current birdcage coils. Average error is defined by
Eg. [7]. UCB represents uniform current coils, CBC and BB represent conventional birdcage coils and
Bolinger’s birdcage coils, respectively, with the same number of turns. ROl is a cylinder of radius 0.8 a.
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advantages over other design techniques, particularly in cases where the number of
current elements is small, strict constraints are placed on the coil dimensions, or the
geometry of the coil is not easily handled by other methods.

Potential applications of the algorithm include the design of windings to produce
the main static field, gradient fields, and shim fields, and also the design of RF coils
with specified sensitivity profiles.

Shielded gradient coils can be designed by distributing currents on two coaxial
cylinders, and including the exterior of the coil in the ROI. A uniform gradient can
be specified within the inner cylinder and zero field specified outside the coil.

We are currently applying our design methods to cylindrical transverse gradients.
In this application, the current loops that make up the coil are broken down into small
wire segments, and these segments are moved individually. Because the segments can
move in both axial and azimuthal directions, an additional level of dimensionality is
added to the parameter space, but the algorithm remains the same. We are also eval-
uating other numerical optimization techniques using this same discrete current ele-
ment model.

Because the coil and the ROI are not required to be cylindrical, other configurations
can be examined with this algorithm. Application to flat or biplanar geometries in
which current is confined to one or two planes is easily implemented because the field
perturbations that accompany the movement of current elements in a plane are easily
calculated. The flexibility in the specification of the ROI and the ability to place
arbitrary constraints on the positions of current elements also suggest the design of
local gradient and/or RF coils for specific anatomic locations. Thus coils could be
made both to fit the anatomic site and to produce the desired field profile.
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