
Real-Time Functional Magnetic Resonance Imaging 
Robert W. Cox, Andrzej Jesmanowicz, James S. Hyde 

A recursive algorithm suitable for functional magnetic reso- 
nance imaging (FMRI) calculations is presented. The correla- 
tion coefficient of a time course of images with a reference 
time series, with the mean and any linear trend projected out, 
may be computed with 22 operations per voxel, per image; the 
storage overhead is four numbers per voxel. A statistical 
model for the FMRI signal is presented, and thresholds for the 
correlation coefficient are derived from it. Selected images 
from the first real-time functional neuroimaging experiment 
(at 3 Tesla) are presented. Using a 50-MHz workstation 
equipped with a 1Cbt analog-to-digital converter, each echo 
planar image was acquired, reconstructed, correlated, thresh- 
olded, and displayed in pseudocolor (highlighting active re- 
gions in the brain) within 500 ms of the RF pulse. 
Key words: functional MRI; recursive image processing. 

INTRODUCTION 

In the last few years, MRI has demonstrated the ability to 
detect changes in cerebral blood volume (11, blood flow 
(2), and blood oxygenation (3, 4) that occur locally in 
association with increased neuronal activity. The most 
widely used MRI method for the noninvasive mapping of 
human brain activity is based on blood oxygenation level 
dependent (BOLD) contrast (5). Functional MRI (FMRI] 
has become a highly used technique for noninvasive 
mapping and analysis of cortical activity in humans (6). 

The percent signal change in activated brain regions is 
small, even at high fields (2 ,3) .  Reliable mapping of brain 
activity thus requires gathering a large number of images 
in both the active and inactive states, so that the noise 
may be reduced by averaging (7). Here, “noise” includes 
not only the usual MRI sensor noise but also physiolog- 
ical fluctuations that affect the signal (8-101. 

A typical FMRI scanning session generates a large 
amount of data-hundreds to tens of thousands of im- 
ages. At present, image combination to extract useful 
functional information is done after the data acquisition 
is complete. Because scanner time is expensive, and it is 
unreasonable to ask a patient or experimental volunteer 
to wait while data analysis software is run, it is quite 
common to postpone functional data “postprocessing” 
until the scanning session is completed. 
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There are three principal reasons why a capability for 
near-real-time viewing of the FMRI activation calcula- 
tions is desirable: 

Data quality may be monitored as an experiment 
progresses; the investigator will know if functional 
activation was measured during an experiment, in- 
stead of waiting to postprocess the data. In particu- 
lar, the effects of stimulus-correlated motion (11), 
which are spread throughout the field-of-view 
(FOV) at all areas with strong MR signal intensity 
gradients, may be observed immediately, enabling 
the investigator to reacquire the contaminated data 
set immediately. 
Real-time FMRI will make it possible to develop 
new task and stimulus protocols much more 
quickly than can be done with “day-after’’ data anal- 
yses. 
Interactive experimental paradigms may be created, 
making FMRI a more flexible tool for neurological 
investigations. For such applications to be possible, 
the ability to see the progress of a scanning session 
as it occurs will be essential. 

Real-time FMRI processing and display will never be a 
complete substitute for postprocessing, where multiple 
statistical methods may be applied to a data set for de- 
tection of activation and suppression of artifacts. In gen- 
eral, FMRI data have a rich structure and are susceptible 
to many artifacts. The results of each experiment should 
be examined from a number of points of view by a trained 
investigator. 

The algorithms designed for processing an entire set of 
images at once (“batch processing”] are not usually suit- 
able for “real-time” processing (i.e., quickly analyzing 
incomplete and growing data sets). A powerful method 
for combining image sequences into an activation map is 
the correlation technique of Bandettini et 01. (71, where 
the time series in each voxel is cross-correlated with a 
“reference vector.” The straightforward implementation 
of this method requires that all the images be gathered 
before processing starts. 

We present an algorithm that recursively computes the 
correlation coefficient of an image sequence with the 
reference vector, and simultaneously projects out (in a 
least squares sense) any undesired time series (e.g., a 
linear trend). The additional computational load for the 
FMRI calculations is minimal if real-time image recon- 
struction is available. We also present an analysis of the 
statistics of the threshold test, derived from a signal 
model. Results from real-time echo-planar FMRI data 
acquisition and processing on a 3 T scanner are shown. 

PARTIAL CORRELATION COEFFICIENT AND FMRI 

The correlation method in FMRI is best expressed in a 
vector space formalism. If x is the vector formed from the 
time series of MR image intensities in a single voxel, and 
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r is a “reference” vector, 
between x and r is 

then the correlation coefficient 

(Mathematical notations and definitions are gathered to- 
gether in the Appendix.) Here, a is the coefficient that 
minimizes Ix - curl; it provides the best fit (in the least 
squares sense) of x to r. By the Cauchy-Schwarz inequal- 
ity, -1 I p I 1. 

In the application to FMRI, the reference r is derived 
from the timing of the mental tasks being performed by 
the subject. The simplest case is that of an “on:ofi:on:off 
task paradigm; a square wave (equal to 1 during “on” 
intervals and equal to 0 during “off intervals) is an 
obvious choice for r. Voxels whose signal levels change 
synchronously with the task will have a large p; those 
whose signal levels simply fluctuate randomly will have 
a small p. We declare as activated those voxels w i d  Ip( 2 
p&. The choice of the threshold pthr is discussed in the 
Statistics of p section. We use the amplitude a as a 
measure of the strength of the signal changes in each 
voxel that is above the threshold. 

More complex methods for choosing r have been dis- 
cussed at length (7). One crucial point is that it is neces- 
sary  to remove the mean signal level from r and x before 
computing p, because the signal changes in BOLD con- 
trast are relatively small. It may also be desirable to 
remove any linear trend in the data, which could be due 
to instrument drift or slow subject motion. If we denote 
by {sl, s2,. . ., sL) the set of vectors that we wish to remove 
from the data, then the resulting signal model is 

L 

that is, that the measured vector x in any voxel is a linear 
combination of a reference vector r and a finite set of 
“trends” (sk] induced by experimental artifacts. To re- 
move the mean and linear trend, for example, we take 
L = 2, s1 = [1 1 . . . 1ITand s2 = [1 2 . . . NIT. 

Denote by P the projection matrix that annihilates the 
vectors (sJ. Then better definitions of p and a are 

When signals are removed from x and r prior to compu- 
tation of p, then p is called the “partial correlation coef- 
ficient” of x with r (12). The definitions in Eq. [2] will be 
derived from a statistical model in the Statistics of p 
section. 

Equation [2] is not well suited for real-time FMRI. 
When one more image is acquired, to recompute p for 
each voxel requires updating the least squares removal of 
S from x, which will almost certainly alter every element 
of Px. The calculation of p will then require recomputa- 
tion of the scalar products in the numerator and denom- 
inator of Eq. [2]. As the number of images grows (i.e., as 
the vectors increase in dimension), the amount of calcu- 
lation will grow. In a real-time application, this is unac- 
ceptable, because at some point the computer will not be 

able to finish processing a new image before the next one 
is ready. 

RECURSIVE CALCULATION OF p 

The first step in the derivation of a recursive technique 
for updating p is to consider the (L + 2) x (L  + 2) matrix 

This matrix contains the inner products of all vectors 
involved in the calculation of p. Calculation of the in- 
verse of sTs using the bordering technique (13) shows 
that the lower right corner 2 x 2 submatrix of [sTs]-’ is 

1 - - 

Thus, once this portion of [sTs]-’ is available, then p and 
a are computable via 

In practice, we wish to update pCm) to p(m+ll when we 
add a new row into !P” to make it s(”’+l). Using the 
notation u:+’ for this last row, we see that 

[s(m+’)]7p(m+l)]  = [s‘m’]7pYm’] + um+lu;+l; 
that is, the change in sTs when a new image is available 
is a rank one update. If the inverse is available at time 
step m, then the Sherman-Morrison formula could be 
used to modify it without a full recalculation (14, p. 890). 
This, however, is not the most efficient way in which to 
proceed. 

The Cholesky decomposition (15) of sTs = CCT may 
also be used to evaluate p. This is more efficient because 
it is faster to compute the Cholesky factor C than the 
matrix inverse, and we only need the lower right corner 
elements of [sTs]-’ in Eq. [3]. Straightforward calcula- 
tion shows that 

All = r[ 1 1 + -1 6 + 2  L+l  

L+ 1 ,L+ 1 L+2L+Z 

Using these formulas, we find expressions for p and a: 

CL+ Z,L+ 1 CL+P.L+I  
112 ff = ~ 

CL+ i ,L+ 1 
P =  

(C”,+Z,L+Z + 6 + 2 , L + l >  

Given C‘”) and a,+,, Carlson’s algorithm is a method 
for updating the Cholesky factor into C(m+l)  (16). Fur- 
thermore, the first L + 1 elements of a,+, are just the 
detrending and reference vectors at time index m + 1, 
and so do not vary between voxels. This means that the 
first L + 1 rows of are the same for all voxels, and so 
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only need to be stored and computed once. The last row 
of depends on the voxel data x,, and so these L + 2 
numbers need to be stored and updated on a voxel-by- 
voxel basis. 

The detailed computational steps are presented in Fig. 
1. Algorithm l a  is used to initialize the independent-of- 
voxel data structure (first L + 1 rows of C(m+l ) )  when 
image m + 1 is available. Algorithm 1b is then applied to 
each voxel in image m + 1; it updates the last row of 
C(m+l) and produces p. Before any voxel data are gath- 
ered, C(O) is initialized to 81, for some small positive S 
(lo-’ in our implementation). This will prevent division 
by zero in the first application of Algorithm la ,  which 
must otherwise be reformulated for the special case 
C ( O )  = 0. Because sTs is proportional to the covariance 
matrix of the current estimates of the amplitudes (a, yk) 
of the signal and detrending vectors, this initialization is 
equivalent to assuming a very large (6-’), but finite, 
variance for the initial estimate of a and Yk in each voxel. 

A fixed amount of computation per image is required, 
which works out to be 5L + 12 operations per voxel to 
compute p; the storage space required is L + 2 locations 
per voxel. (Here, “operation” means a floating point ad- 
dition, multiplication, or square root; “location” means a 
floating point value.) The computational cost compares 
favorably with a batch-oriented implementation of Eq. 
[2], assuming the vectors (sl, s,, . . ., sL, r) are orthonor- 
malized. Then 3L + 4 operations per voxel, per image 
would be required to compute p. (This does not include 
the overhead of orthonormalization, which is directly 
analogous to the computation of the first L + 1 rows of 

Qlgorithm la: Initialme for image m + 1 

5 + [S l ,m+l  SZ,m+l ... SL,m+l Tm+11 

jold 

or j = 1,2,. . ., L + 1 do 

hj + zj/cjj [save hj] 

Pnew + (P& + hf)1’2 

f j  PnewlPold  [save fjl 

gj hj/(Pnew * Pold) [save gjl 

Pold Pnew [save last Poldl 

f o r k =  j, ..., L + l d o  

zk + zk - hj ‘ckj 

ckj fj * ckj + gj * zk 

C‘”’.) We emphasize that this direct implementation of 
Eq. [2] does not lend itself to real-time computation, 
because it is nonrecursive. In our applications, L is small 
(2 or 3); by far the biggest computational loads are recon- 
struction and display. 

STATISTICS OF p 

The use of the correlation statistic p and its associated 
amplitude a for FMRI activation detection may be de- 
rived by modeling the data vector x as in Eq. [I] with the 
addition of white noise: 

L 

x = ar + z y ! $ k  + El). [41 

Here, (a, Yk, E ]  are unknown parameters to be estimated 
from the measurements x; the vectors sk, r are as before; 
q is a vector of independent NO, 1) (standard normal) 
random variables; E’ is the unknown variance of the 
noise in the chosen voxel (we do not assume that the 
noise has the same distribution in all voxels). In this 
section, a refers to the true (but unknown) value in Eq. [4] 
and & refers to a statistical estimate from the data x. 

Under this model, the probability density for x is 

1 L 

p(x) = ( z ~ ) ~ , z p  exp[-lx - ar - ?’ksk12/(z~)1- 151 2 
Maximum likelihood estimation (MLE) is a general tech- 
nique for estimating unknown parameters (17). The MLE 
method is simply to maximize P(x) in Eq. [5] by varying 
the parameters-the observed x is taken as fixed. For this 

Algorithm lb:  Update p,  a in one voxel 

2 c x , + ~  [new MR intensity] 

f o r j =  1, ..., L + l  do 

+ i - hj * c L + ~  ‘ !J 2 

CL+2,j  + f j  ~ ~ + 2 , j  + gj * 2 

CL+2,L+2 + (C2+2,L+2 + i2/P?1d) 1 / 2  

1 1 2  
PJm+l) 

&+l) + CL+2,L+lICL+l,L+l 

+ CL+P,L+lI (C2+2,L+2 + 4 + 2 , L + 1 )  

FIG. 1. Computational recipes to update p in each voxel when one new image is calculated. Algorithm la is executed first; its inputs are 
the new components for the detrending vectors sk and reference vector r; its outputs are t h e  coefficients (h,, 4, gr j = 1 . . . L + l}, and 
Pold. Algorithm 1 b is then executed for each voxel; its inputs are the outputs of Algorithm la, and the new MR signal intensity for each 
voxel; its outputs are the updated values of p and (Y. Both algorithms also update the elements of the Cholesky factor C. 
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linear, normally distributed model, MLE is equivalent to 
least squares estimation for (a, the result for 2 is 
given in Eq. [2]. The MLE for the noise variance is C2 = 

We may also compute the probability distribution of 
the estimated quantities. We find that 2 is normally dis- 
tributed with mean a and variance E2/IPrI2; we find that 
g2 is distributed like e2/N times a ,$ variable with u = 
N - L - 1 degrees of freedom ( N  - L - 1 because L + 1 
other parameters are being estimated from x). We also 
find that the distributions of 2 and C2 are independent. 
These facts together imply that 

wllx - &r - xkTf lk(2  = w 1 c E + 2 , L + 2 .  

is distributed like a Student t variable with v degrees of 
freedom. 

We may use this result to test if & is significantly 
different from zero. Under the null hypothesis (a = O), T 
in Eq. [6] is equal to u1’2cL+2,L+1/cL+2,L+2, and so is 
readily computable from the algorithm presented in the 
Recursive Calculation of p section. Accepting as “acti- 
vated” those voxels with [TI > t,,p,2 will have a type I 
(false positive) error probability of p .  Equivalently, a 
confidence interval of probability 1 - p for a is 

The threshold test on IT1 is the uniformly most powerful 
unbiased test, under the assumptions of the statistical 
model; the confidence interval for a is the shortest pos- 
sible (17). 

Under the null hypothesis, we find that p2 is distrib- 
uted like a beta variable with parameters 1/2 and %v. We 
may use this to develop a theoretical basis for choosing 
pthr. (Thresholding IpI is algebraically equivalent to using 
the t test on T.) Specifically, i f  we wish to accept a 
probability of false positives of p per voxel, then we 
choose p k  to be the ordinate on the beta distribution 
with cumulative probability 1 - p .  Figure 2 gives an 
algorithm to approximate pw 

Algorithm 2: Compute p1llr ! 
0 .010328~~ f 0.802853s + 2.515517 

0.001308~~ + 0.1892G9s2 + 1.432785s + 1 
[26,2,231 

x3 + x 5x5 + 16x3 f 3 1  
96u2 L p 1 2 -  2 -t 7 ’ [26.7.5] 

[26.5.27] 

FIG. 2. Algorithm to approximate fihr. Inputs are v (nominally N - 
L - I), and p = probability of false positive per voxel. Citations in 
square brackets are to equation numbers from ref. 23. 

RESULTS 

Echo planar data were acquired from a whole body Bio- 
spec 3 T scanner (Bruker Instruments), using a 30-cm 
inner diameter three-axis balanced-torque head gradient 
coil (la), and a quadrature transmitheceive endcapped 
birdcage RF coil designed for highly sensitive whole 
brain imaging (19). A single shot blipped gradient-echo 
EPI sequence using an initial goo pulse and an effective 
TE (to reach k, = ky = 0) of 40 ms was used. The FOV 
was 24 cm, slice thickness 8 mm, and TR was 2 s (to 
ensure that no data was lost during real-time process- 
ing-the scanning system as described above can have 
TR as low as 100 ms). Image matrices of 64 X 64 and 96 x 
96 have both been used; for display purposes, images 
presented herein were interpolated to 256 x 256. 

The analog signal was diverted from the Bruker data 
acquisition system into a Crimson workstation (Silicon 
Graphics) containing a 14 bit A/D converter (Pentek). 
Real-time echo planar reconstruction was followed by 
the algorithms of Fig. 1. The brain images, with color 
overlays indicating voxels where IpI 2 pthr, were dis- 
played approximately 500 ms after each RF pulse. 

Figure 3 shows some of the images resulting from our 
first real-time functional imaging experiment, conducted 
with a 64 x 64 image matrix, and using a repetitive 
‘~nger-tapping:rest” task paradigm (3). In this instance, 
the subject was instructed to tap the fingers of both hands 
sequentially for 20 s and then rest for 20 s, alternating for 
five full cycles (100 images). The reference time series r 
was the corresponding square wave with period 40 s, 
delayed 4 s from the task timing to allow for the hemo- 
dynamic rise time (7). 

The background gray scale image in each panel of Fig. 
3 is the echo planar image resulting from the first shot: it 
has a great deal of CSF-gray matter contrast and provides 
a good anatomical reference, with no need to warp the 
echo-planar derived overlays due to B,, inhomogeneity 
induced image distortions. The brighter overlays in Fig. 3 
were computed using a constant pthr = 0.45, which is a 
value appropriate for the last image. An alternative dis- 
play strategy would be to lower pthr as m increases, so as 
to maintain the same p value. This is less interesting and 
less useful to observe in real time, because very few 
voxels become significantly activated until two task cy- 
cles are completed (at m = 35). Also, the “spuriously” 
correlated voxels convey some information. Although 
each individual correlation is not statistically significant 
for small m, the clustering of correlated voxels is signif- 
icant. The large number of correlated voxels at the left 
edge of the brain at m = 15 and m = 25 are probably 
indicative of slight head motion at the start of the first 
finger tapping interval. The ability to monitor such ef- 
fects is important in the applications of real-time FMRI. 

FURTHER DIRECTIONS FOR REAL-TIME FMRI 

As more computational power becomes attached to M R  
scanners, it will become routine to reconstruct and dis- 
play multislice and 3D images in near real time. The 
work presented in this article shows that processing for 
FMFU activation may be done at small additional cost. An 
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FIG. 3. Images from the first real-time FMRI experiment; task alternation was 10 images of sequential finger tapping, 10 images of rest; 
echo planar images are 64 x 64, FOV 24 cm. Brighter gray levels are overlaid on voxels with p@“) 2 0.45; white corresponds to the largest 
value of &. For all images, the background gray scale image is from the first echo planar shot, which has the greatest CSF-gray matter 
contrast. The gradual resolution of the subject’s motor cortex is apparent. 

important issue that remains to be creatively explored is 
the display of 3D functional results in real time. 

Choice of the reference vector r is an issue addressed 
by Bandettini et al. (i’), Friston et al. (20), and Binder et 
al. (21, 22). Uncertainty in r will lead to an increased 
probability of false negatives: to the extent that the model 
Eq. [4] is accurate, but r is incorrect, then true positives 
will tend to have (PI  underestimated and so be lost in the 
noise. One possibility not yet explored in the literature is 
to project each data vector x onto a multidimensional 
“response space” rather than a single vector r; this is the 
idea behind multiple correlation (12). An example would 
be to use two or three harmonics of a square wave (i.e., 
the Haar wavelets) for a periodic task alternation proto- 
col, so that the reference function can be more flexible in 
its shape. After two or three task cycles, a “best fit” 
reference vector could be chosen from the response 
space, if the lower dimensional correlation is found to be 
more statistically robust. The recursive algorithm pre- 
sented herein is readily adapted to computations of these 
sorts. 

In principle, Algorithm l a  could be executed before 
data acquisition, using the detrending and reference vec- 
tors, and its results stored for each m. In practice, the 
amount of time saved would be very small. This means 

that it is practicable to compute real-time FMRI results 
with the detrending andlor reference vectors acquired in 
real time along with the MR images. 

As pointed out by several investigators (8-lo), the 
noise in FMR image sequences is not temporally white: 
that is, the density Eq. [5] should be modified to include 
correlations between the components of x. If this is done, 
the statistics of p become significantly more complicated; 
in general, we may expect correlated noise to cause larger 
values of IpI to be more likely under the null hypothesis. 
This may be approximately allowed for by decreasing the 
number of degrees of freedom v used to calculate the 
threshold. The simplest way to do this is to gather an 
image sequence of null data (no task alternations), and 
then compute the values of p in all brain voxels. Under 
the beta distribution, (p’) = (v + I)-’; - turning this 
around, we may estimate v by E = (p*)-’ - 1. This 
provides a convenient way to approximate the distribu- 
tion of p and extrapolate it (using Algorithm 2). The 
threshold pthr may then be set corresponding to a lower p 
value than is directly available from the null data image 
sequence statistics. 

It is common to choose quite small values of p (e.g., 
lop4  or less) so as to ensure that the total probability of a 
false positive in an image is less than 0.05 (say). A simple 
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and conservative way to choose p is by the Bonferroni 
method: for example, if there are 1000 brain voxels in an 
image, then p = 0.05/1000 = 5 X 10K5 is the Bonferroni 
corrected threshold probability per voxel. Spatial corre- 
lations in the noise (as opposed to the temporal correla- 
tions discussed in the previous paragraph) mean that the 
Bonferroni corrected p can be very conservative. More 
elaborate methods for choosing p for FMR image analysis 
are discussed by Friston et al. (20). 

APPENDIX MATHEMATICAL NOTATION 

The major symbols and notations used in this article are 
gathered here for ease of reference. A vector space for- 
malism is used to represent signals as functions of time. 
For example, x is a vector whose mth component x, is 
image intensity in a particular voxel at time t = m - TR. 

N = Dimension of data vectors = number of M R  
images. 

L = Number of detrending vectors (i.e., time series 
to be removed from the data before the 
correlation coefficient is calculated). 

sk = Detrending vector k, for k = 1, 2, . . ., L. 
r = Reference vector (i.e., time series being 

correlated with the data). We implicitly assume 
that r f span (sl, s,, . . ., sL}; that is, Pr # 0 (see 
below for P). 

x = Data vector (i.e., time series of MR intensity 
from a single voxel). 

a = Amplitude of r in x, after detrending (constant 
that minimizes IPx - aPrl). 

yk = Amplitude of sk in x. 
p = Partial correlation coefficient of x with r, when 

correlated components of detrending vectors are 
removed. 

1x1 = [xTx]1/2 = [X,X:]”’ (N.B.: a weighted inner 
product Cjwp-,y, may be allowed for by scaling 
all vectors in RN by w;”). 

S = N X L matrix of detrending vectors: [sl s, . . . 
SLI . 

P = N X N projection matrix from RN onto the 
orthogonal complement of span ( s l ,  s,, . . ., SJ. 

= Operator that removes correlated components of 
detrending vectors from data vectors. 

= I - S[STS]- ’ST (N.B.: P2 = P = PT). 
= N x (L  + 2) matrix of detrending vectors, plus 

reference and data vectors: [sl s, . . . sL r XI. 
C = ( L  + 2) x (L  + 2) lower triangular Cholesky 

factor of sTs ( ia ,  the matrix with cij = 0 for 
j > i, and such that CCT = sTs). 

A = Lower right corner 2 X 2 submatrix of [sTS]-’. 
m = Time index; quantities labeled with a 

superscript (m) are formed with the first m 
components of the relevant vectors; for 
example, s[m) is an m X (L  + 2) matrix which 
is formed from the first m rows of 5; quantities 
formed with a subscript m are formed using 
only the mth components of the vectors (e.g., 
a, below). 

a, = L + 2 vector formed from the mth row of (i.e., 
from information available at time t = m - TR). 

- - [si ,m S2.m * - sL,,rm x,I 
pthp = Threshold in the test IpI 2 pthr, used to decide if 

a voxel time series is significantly correlated 
with r. 

v = Number of degrees of freedom in the 
distribution of p, used to compute pth; 
nominally N - L - 1. 

& = Variables with a “hat” denote statistical 
estimates of parameters; see the Statistics of p 
section. 

E‘ = Variance of the noise in x. 
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