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Momentum-Weighted Conjugate Gradient Descent
Algorithm for Gradient Coil Optimization

Hanbing Lu, Andrzej Jesmanowicz, Shi-Jiang Li, and James S. Hyde"

MRI gradient coil design is a type of nonlinear constrained
optimization. A practical problem in transverse gradient coil
design using the conjugate gradient descent (CGD) method is
that wire elements move at different rates along orthogonal
directions (r, ¢, 2), and tend to cross, breaking the constraints.
A momentum-weighted conjugate gradient descent (MW-CGD)
method is presented to overcome this problem. This method
takes advantage of the efficiency of the CGD method combined
with momentum weighting, which is also an intrinsic property of
the Levenberg-Marquardt algorithm, to adjust step sizes along
the three orthogonal directions. A water-cooled, 12.8 cm inner
diameter, three axis torque-balanced gradient coil for rat imag-
ing was developed based on this method, with an efficiency of
2.13,2.08,and 4.12mT-m™ - A" along X, Y, and Z, respectively.
Experimental data demonstrate that this method can improve
efficiency by 40% and field uniformity by 27%. This method has
also been applied to the design of a gradient coil for the human
brain, employing remote current return paths. The benefits of
this design include improved gradient field uniformity and effi-
ciency, with a shorter length than gradient coil designs using
coaxial return paths. Magn Reson Med 51:158-164, 2004.
© 2003 Wiley-Liss, Inc.
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Gradient coils with high efficiency and fast slew rate are
desirable in a variety of MRI applications, and a local
gradient coil is an efficient way to meet these require-
ments. There are two classes of methodologies in local
gradient coil design: analytical approaches and numerical
optimization methods (1). For coil design using analytical
approaches, the geometry of the coil usually needs to be
defined, which is inconvenient when the geometry is not
easily handled or the optimum geometry is unknown, such
as the “sandwich” coil design (2). In the sandwich geom-
etry, remote current return paths are used to design a short
local gradient coil for human brain imaging; wire elements
are embedded in circular disks and sandwiched together.
The optimum surface geometry for the wire elements is
unknown. Numerical optimization methods can be advan-
tageous in these cases (3—9). Conjugate gradient descent
(CGD) is an established numerical optimization method. It
was introduced for gradient coil and RF coil optimization
by Wong et al. (3), and subsequently applied to gradient
coil design by Brey et al. (9) and others. In the context of
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MRI, this method has also been applied to RF pulse opti-
mization (10) and image reconstruction for parallel imag-
ing (11).

The attractive feature of CGD is its flexibility. A desired
field in the region of interest (ROI) of any shape can be
arbitrarily prescribed, constraints on current elements can
be easily applied, and the error functions can be flexibly
combined with field uniformity, inductance, and power
consumptions. This process can be combined with other
coil design methods for final optimization.

In the past, with gradient coils optimized using the CGD
method (3,9), the variables to be optimized were either the
currents at prescribed locations or the locations for pre-
scribed currents. For a design to be practical for construc-
tion, there are several constraints. They include: 1) current
is continuous; 2) the space between neighboring wires
should be greater than defined minimum values; 3) the
wire elements must be within defined physical dimen-
sions of the coil; and 4) there is no crossover of wires.
These constraints are readily satisfied when the variable to
be optimized is one-dimensional. For example, for a Z
gradient coil on a cylindrical surface, the variables to be
optimized are the positions of the wire loops with constant
diameters. Only the z coordinates need to be optimized (in
cylindrical coordinates (r, ¢, z)).

However, there are conditions where the coordinates
to be optimized are multidimensional, including the
transverse gradient coil design on a cylindrical surface,
where both the ¢ and z locations need to be optimized
for each wire. Another example is the sandwich gradient
coil design, where r, ¢, and z coordinates must be opti-
mized. A practical consideration is that each element
moves at significantly different rates along the three
orthogonal directions (r, ¢, z), and neighboring elements
tend to cross, breaking the constraints listed above. This
limits the number of wire elements that can be em-
ployed, degrades coil efficiency and gradient field uni-
formity, and can result in designs that are impractical
for construction. This problem was encountered during
the design of a high-efficiency transverse gradient coil
for animal studies and a sandwich gradient coil for the
human brain. To the best of our knowledge, this problem
has not been fully addressed in the literature of MRI
gradient coil design.

The purpose of this work is to develop a method to
mitigate this problem. Theoretical analysis is presented,
followed by experimental results. Our approach enabled
practical designs to be generated with improved coil effi-
ciency and field uniformity. Preliminary accounts of the
present work have been presented elsewhere (2,12). This
method may be useful in other numerical optimization
environments.
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MATERIALS AND METHODS
General Theory

For a multivariable function, f(x) at p can be approximated
by a Taylor series, given by:
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Here, A is the Hessian matrix whose components A, ; are
the second-order partial derivatives of f(x) at p, and b is the
first-order partial derivative matrix of f{x) at p. The local
minimum of f{x) can be found iteratively using CGD based
on the method described in Ref. 13.

In gradient coil optimization, the error function can be
defined as:

M
= E (Bm - Bm)zr [2]

where B, is the desired magnetic field at the mth point in
the ROI, B, is the calculated magnetic field at this point
using the Biot-Savart law, and M is the total number of
specified points in the ROIL It is apparent that E is a
function of the coordinates of the wire elements. In gradi-
ent coil optimization, the challenge is to find the optimum
coordinates for each of the wire elements p,, p;, p»,..-, Pa»
such that the error function E is minimized under the
constraints.

The gradient vector for the nth element can be calcu-
lated using the finite difference of the error function, given

by:
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The local minima of E can be searched iteratively using the
CGD method. Specifically, at the ith iteration, the search
direction for the nth element (dr,; de¢,; dz,; can be
derived based on the method described in Refs. 3 and
13 using the gradient vectors described above. The coor-
dinates of the wire elements are optimized using the fol-
lowing equation:
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FIG. 1. The x values in the wire elements along half of a loop (the
other half is symmetric), where x is defined in Eq. [5]. A and B
indicate elements with large x values, and C indicates x =~ 0.

P, =P +é&d, [4]

where P and d are N-dimensional vectors representing the
coordinates of the wire elements and the search directions,
respectively. £ is the step size to be chosen to minimize E
along direction d.

For convenience, we chose cylindrical coordinates for
the calculations. In practice, the numerical values of 9E/
(r, * 9¢,) and 0E/dz, are dramatically different between
wire loops, and between segments within the same loop,
depending on optimization stages. The ratio of dE/(r,, - d¢,,)
over dE/0z,, is introduced to address this problem:

IE/ (1, d¢,)
Xn = 5K/ 0z, 51
Figure 1 shows the x values in a wire loop during the
optimization of a transverse gradient coil on a cylindrical
surface (only half of this loop is shown because of sym-
metry). In this case, r, is the radius of the cylinder (R).

X €[0.013, 0.048] for1=n=18,
Xmin = —4.339 for n =21,
Xmax = 13.321 for n=22.

Two observations can be made: first, the absolute values
of x are not close to one. They are close to zero in region C
(see Fig. 1), and are higher in A and B. Variations of about
1000 times exist. Second, the local minima and maxima of
the x values are closely spaced. The local maximum points
are at n = 22 and 24, and local minimum points are at n =
21 and 23. These data indicate that the curvature of the
error surface is strongly “valleyed” at the locations where
x values are close to zero (in region C), and that the error
surface is not flat where peak x values alternate (in regions
A and B). Similar phenomena were found in the sandwich
gradient coil design. In this case, peak dE/dz > peak dE/(a -
d¢p) > peak oE/or, where a is the radius of the inner circle.

In coil optimization using CGD as developed by Wong et
al. (3), only the first-order partial derivatives are used. The
second-order partial derivatives (the Hessian matrix),
which encode the curvature information of the error func-
tion, are not used. The curvature of the error surface makes
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wire elements move at different rates along different di-
rections in vector space and tend to cross, limiting the
number of wire loops that can be employed. This degrades
coil efficiency and field uniformity.

Levenberg-Marquardt Method

The Levenberg-Marquardt method (13—16) can be used, in
principle, to address this problem. This method estimates
the Hessian matrix using the first-order partial derivatives
and performs the optimization based on the following
equation:

P, =P,— (H+\-diag[H)) - d,, (6]

where d is the search direction and H is the approximated
Hessian matrix, formed from the first-order partial deriva-
tives (13,14). This method adjusts step size for each pa-
rameter, based on the estimated Hessian matrix. When A is
a large number or H is set to be an identity matrix, Eq. [6]
has a steep descent. In essence, this method moves farther
in the directions with smaller gradients and less in the
directions with larger gradients in order to get around the
classic “error valley” problem. This algorithm involves a
matrix inversion, which is a minor issue for Z gradient coil
optimization. However, for the example of transverse gra-
dient coil optimization that we address, the matrix size is
1280 X 1280, and iterative matrix inversion would be
computationally intensive.

Momentum-Weighted CGD (MW-CGD) Method for
Transverse Gradient Coil Design

Since large differences exist in the gradients along the
radial, azimuthal, and z directions as shown in Fig. 1, a
practical approach has been developed that combines the
efficiency of CGD with weightings that are analogous to
those of the Levenberg-Marquardt algorithm. Specifically,
Eq. [4] is decomposed into the following equation:

Toit1 Qoi+1  Zo,i+1 Loi  Qoi Zo,i
Tiive Prit1 Zai+1 _ Tyi @i Zai
Init1 PNi+1  ZNi+1 I'ni @Ni Zni
dry; deo; dzy;
e de. dr. B oo
+ Q- ] .1.,1 1,1 1,1 . 0 ,Y 0 [7]
0 0 1
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where «; is the step size along z at the ith iteration, and
and <y are defined according to the following three condi-
tions:

(i) for a cylindrical Z gradient coil design, B = y = 0.
(ii) for a cylindrical transverse gradient coil design, B =
0, and v is defined as:

1 N
y = 2 [(0B/92,)/(4EIR - d¢,)T", [8a]
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(iii) for a coil design on an irregular surface, such as a
sandwich gradient coil design, vy is similar to Eq.
[8a] and B is defined as:

1

N
B =~ > [(0E/dz,)/(9E/dr,)]". [8Db]
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Here g and +y provide momentum weightings of the step
sizes for the radial and azimuthal coordinates.

The parameter a is chosen based on the following pro-
cedures: At the ith iteration, the error function E(P,) is
calculated. Parameter a starts with a small number, say
0.0001; P, , is derived using Egs. [7], [8al, and [8b]; and
error function E(P,, ,) is evaluated. Parameter « is succes-
sively doubled or halved until the following condition is
satisfied:

E(Pi) - E(Pi+1)

T ER) L (9]
where { is an empirical number that determines the
amount of error decrease at each iteration. In our experi-
ence, { is usually good if the error decreases about 5-10%
(¢ is between 0.05 and 0.1). The error function is usually
minimized under the constraints after 20-30 iterations.
During the early stages of optimization, a is typically
small. The effects of a small « are twofold: it ensures that
the quadratic approximation of the error function is valid,
and it also enhances the effects of momentum weighting,
since the amplitude of the gradients tends to be large
during the early stages.

RESULTS
Gradient Coil Design for Rat Imaging

We have applied this method to the design of a three-axis
torque-balanced cylindrical gradient coil for rat imaging. A
12.8 cm inner diameter was chosen to permit enough
space for placing stimulus and physiological monitoring
equipment inside the coil for fMRI using small animals.
The ROI to be optimized was a sphere of 7 cm diameter at
the center of the coil. Eighty points (M = 80) within one
octant of the sphere were defined as the discrete ROI. The
desired magnetic field at each point (B,,) was specified. An
initial pattern of 20 loops with 128 segments in each loop
was also prescribed. The magnetic field at each point of the
ROI (B,,) was calculated. The error function was defined
based on Eq. [2]. A total of 1280 wire segments, each with
two variables (¢ and z), needed to be optimized. The goal
was to optimize the coordinates of these wire segments so
that the error function was minimal under the constraints.
The prescription of the initial pattern was somewhat arbi-
trary. However, after 2—3 trials, an initial pattern could be
readily prescribed. In our experience, the final pattern did
not depend strongly on the initial pattern, since a “bad”
initial pattern could be corrected during the optimization
stages that followed.

The optimization process was carried out as follows: the
first-order partial derivatives were calculated using Eqgs. [3al-
[3c]. Search direction d for the wire segments was derived
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FIG. 2. One octant of the winding patterns without using the pro-
posed method. D indicates the sharp inflections in the winding
pattern. These inflections limit the number of winding loops that can
be employed (only 10 winding loops were able to be incorporated in
this case), which degrades the coil efficiency and gradient field
uniformity.

using the equations in Ref. 13. Momentum-weighting B for
the step size along ¢ was calculated based on Eq. [8a]. Wire
segments were moved to the next iteration using Egs. [7] and
[9]. This process was repeated 20—30 times until the local
minimum was reached under constraints, which took about
2 hr on an SGI Indigo2 workstation.

Figures 2 and 3 show the winding patterns for the X
gradient without and with this technique, respectively. In
Fig. 2, the efficiency was 1.52 mT - m™ - A™, and the
average error over a spherical volume of 7 cm diameter
was 1.27%. The irregular winding patterns are apparent,
especially in region D (see Fig. 2). These sharp inflections
limit the number of wire loops that can be used, which in
turn limits coil efficiency and degrades the uniformity of
the gradient field. These irregular patterns do not disap-
pear by increasing the number of wire segments. However,
by using momentum-weighted step sizes and choosing
small step sizes during the first iterations, as described
above, the irregular winding patterns disappeared, which
permitted more wire loops to be added, leading to im-
proved coil efficiency and field uniformity. The efficiency
of this coil is 2.13 mT - m™ - A™, and the measured
inductance is 199 pH. The Y gradient coil was designed in
a similar fashion. The Z gradient coil was designed with
two layers; Z, is the innermost layer with a total of 28 turns
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FIG. 3. Winding patterns based on the method of this article. The
sharp inflections disappear, which permits 20 winding loops to be
incorporated, resulting in designs with improved efficiency and gra-
dient field uniformity.
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Table 1
Specifications and Figure-of-Merit Values of the Rat Gradient Coil

Axis Efficiency Inductance Diameter F
mT-m"-AT) (wH) (m) (X107%)

X (20 turns) 2.13 199 0.146 217
Y (20 turns) 2.08 202 0.152 2.33
Z, (28 turns) 2.08 67.7 0.139 3.32
Z, (36 turns) 2.03 119.3 0.158 3.26

of wires, and Z, is the outermost layer with 36 turns of
wires. Table 1 lists the detailed coil specifications and the
figure-of-merit values that were calculated using the for-
mula proposed by Chronik et al. (17,18):

M- a*
= \/Z ,

where m is the gradient efficiency (mT - m™ - A™) within
the region of interest, L is the coil inductance (nH), and a
is coil radius (m). This definition of figure-of-merit as-
sumes that inductance scales with the fifth power of radius
(1). However, this has not been fully justified in real coil
design situations. The F values for Z, and Z, are essen-
tially the same, while they are similar for X and Y (see
Table 1). These data suggest that Eq. [10] is suitable for
quantifying the performance of a single-layer Z gradient
coil, and that it is also reasonable for evaluating single-
layer transverse gradient coils with a cylindrical geometry.
However, this formula does not include gradient field lin-
earity, uniformity, and coil length. Coil length can be an
important parameter for human gradient coil design be-
cause of coil-shoulder clearance and magnetostimulation
concerns.

Figure 4 shows the gradient coil that was constructed in
our laboratory. Winding grooves for Z,, X, Y, and Z, were
cut layer by layer using a numerically controlled milling

F

[10]

FIG. 4. Water-cooled, torque-balanced, three-axis gradient coil de-
signed using the MW-CGD method. This coil has an efficiency of
2.13,2.08, and 4.12 mT-m™ - A" along X, Y, and Z, respectively,
and is driven at 96 s rise time.
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FIG. 5. a: Coil design using coaxial return paths. The active arc AB
is shorter than the return arc CD. b: Coil design using remote current
return paths (the other half is symmetric). The active and return arcs
have different radius and azimuthal angles. Each wire loop is divided
into 128 wire segments and each segment has three parameters (r,
¢, Z) to be optimized. As a result, the optimum outer surface of the
wire loop is irregular and is different from loop to loop. These wire
loops are embedded into disks and sandwiched together.

machine. Copper wires (AWG No. 13) were embedded in
the grooves and stabilized with epoxy. Water-cooling was
incorporated outside Z, using copper tubing. This coil is
12.8 cm LD., 20 cm O.D., 35.6 cm in length, and weighs
19.8 kg.

Gradient Coil Design Using Remote Current Return Paths
for Human Brain

Local gradient coils with low inductance, reasonable effi-
ciency, easy access to the uniform gradient region of the
coil, and low acoustic noise are desirable in MRI using
human subjects. The use of coaxial return paths provides a
good compromise that meets these requirements (9,19—
21). Figure 5a shows two coaxial loops. The active arc AB
is shorter than the return arc CD, and the radial elements
BC and DA generate gradient fields that degrade field uni-
formity in the center of the coil. Instead of using the same
azimuthal angles in the active and return arcs as in coaxial
geometry, an approach employing remote current return
paths has been suggested (2). In this approach, wire loops
are embedded in planar disks and the disks are then sand-
wiched together. Each wire loop has 128 discrete wire
segments, each with three parameters (r, ¢, z) to be opti-
mized. As a result, the optimum outer surface of the wire
loops is irregular (see Fig. 5b for details). The MW-CGD
method has been applied to design a “sandwich” gradient
coil. This coil has 0.32 m I.D. and 0.45 m O.D., with an
efficiency 0f 0.118 mT - m™ - A™ and inductance of 310 pH.

—
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The total length of this coil is 0.29 m. The rms error over a
cylindrical volume of 0.175 m diameter and 0.19 cm
length is 3.1%. The figure-of-merit of this design is similar
to that of equivalent designs using coaxial return paths
(19,20), although the value of n//L is about 1.5-3 times
greater than the latter two designs. One notable advantage
in the sandwich gradient design is that the length-to-di-
ameter ratio is only 0.92, which is about half of that in
Refs. 19 and 20. This coil is under construction and ex-
perimental results will be reported in the future.

Rat Gradient Coil Evaluations

A 16-strut birdcage RF coil with 5.1 cm LD. and a length of
9.5 cm was built to evaluate field uniformity and linearity
of this gradient coil. All experiments were carried out on a
3T BIOSPEC 30/60 scanner (Bruker Medizintechnik,
Karlsruhe, Germany). Figure 6a is a sagittal image acquired
using a FLASH-type sequence with a homemade cylindri-
cal phantom (4.8 cm I.D., 9.5 cm in length). Scan param-
eters were: TR 500 ms, TE 10.5 ms, FOV 12 cm, 2 mm slice
thickness, matrix size 256 X 256, six averages. The maxi-
mum distortion measured 3.1 cm away from the center of
the image was 2%, which agrees well with theoretical
designs. The dark areas at the top and bottom of Fig. 6a
were due to RF field nonuniformity close to the end-rings
of the birdcage coil.

Figure 6b—d shows axial images acquired using a home-
made grid phantom (4.8 cm ILD., 9.5 cm in length). The
dimension of the grids was about 1.5 X 1.5 cm?®. Scan
parameters were the same as for Fig. 6a except that the
FOV was 6 cm. Three slices with a slice separation of
2.5 cm were acquired. No obvious distortions were ob-
served in these images.

High-Resolution fMRI Using the Rat Gradient Coil

This coil was applied to fMRI experiments using a rat
whisker-barrel stimulation model. a-chloralose anesthe-
tized rats were paralyzed with gallamine and mechani-
cally ventilated. The femoral artery and vein were cannu-
lated for blood pressure monitoring, blood gas measure-
ments, and drug delivery. The rectal temperature was
maintained at 37 * 0.5°C by a temperature-controlled wa-
ter-heating pad. The rat head was fixed with a homemade
bite bar and ear bar. A homemade saddle coil of 9 cm I.D.
and 10 cm length was used for RF excitation with a 1.5 cm

c d

FIG. 6. Evaluations of the gradient coil. Image a was acquired using a cylindrical phantom. Arrows indicate the maximum distortions 3.1 cm
away from the center of the gradient coil. The dark areas at the top and bottom of this image are due to RF field inhomogeneities at both
ends of the birdcage coil. b-d: Axial images acquired using a homemade grid phantom. Image ¢ was at the center of the gradient coil. Slice

separation was 2.5 cm.
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FIG. 7. High-resolution cross-correlation activation maps (voxel volume: 156 X 156 X 2000 um?). Left: activation map superimposed on
the first EPI image in the time course. Right: enlarged view of the activation map in the whisker-barrel cortex. Data were acquired using
two-shot partial k-space EPI. Scan parameters were: FOV = 2 cm, slice thickness = 2 mm, matrix size = 128 X 128, effective TR = 2 sec
(1 sec per shot). The activated pixels are primarily located in the gray matter and the pixels with high BOLD responses (the yellow pixels

in Fig. 7b) are located on the surface and deep cortical layers.

L.D. surface coil for signal reception. A homemade whisker
stimulator was used to deliver stimulus of desired frequen-
cies and durations. All animal protocols were approved by
the Laboratory Animal Safety Committee of the Medical
College of Wisconsin.

A two-shot, half k-space echo planar imaging (EPI) se-
quence with phase-corrected by phase-encoded calibra-
tion scans was used in this study (22). The scan parameters
were: FOV 2 cm, matrix size 128 X 128, TE 24 ms, slice
thickness 2 mm, data acquisition bandwidth 166 kHz,
effective TR 2 sec (1 sec per shot). The scan paradigm was
a block design consisting of four cycles of 64 sec on and
32 sec off. Functional data were analyzed using a cross-
correlation method (23) in the AFNI software package (24).
All pixels in the whisker-barrel cortex with a P-value <
0.005 were considered activated.

Figure 7a shows a cross-correlation activation map su-
perimposed on the first EPI image in the time course.
Figure 7b is an enlarged view of the activation map in Fig.
7a. The activated pixels are primarily located in the gray
matter and the pixels with high BOLD responses (the yel-
low pixels in Fig. 7b) are located on the surface and deep
cortical layers. These data demonstrate that with this high-
efficiency gradient coil we are able to acquire high-resolu-
tion fMRI data using reduced FOV with increased data
acquisition bandwidth and reasonable temporal resolution
(effective TR = 2 sec).

DISCUSSION

In gradient coil optimization using CGD, the constraints
are more complicated for transverse gradient coils than for
the Z gradient coil because of the greater number of ele-
ments and additional dimensions for each element. The
Hessian matrix, which encodes the curvature information
of the error function, has not been used in the past. The
Levenberg-Marquardt algorithm takes curvature informa-
tion into account by adjusting the step sizes in each direc-
tion using an estimated Hessian matrix. This method has
been widely applied in the optimization of medium-sized
nonlinear models. However, matrix inversion makes this
method inefficient for transverse gradient coil design. Our
method takes advantage of the efficiency of the CGD
method combined with momentum weighting, which is an
intrinsic property of the Levenberg-Marquardt algorithm,

to adjust step sizes along the three orthogonal directions (r,
¢, z). Like the Levenberg-Marquart algorithm, our ap-
proach is heuristic; however, it tends to generate practical
designs with high efficiency and field homogeneity. Using
the design pattern shown in Fig. 3, the efficiency increased
by 40% over Fig. 2 and the field uniformity increased by
27%.

The major difference between our method and the orig-
inal CGD method proposed by Wong et al. is the decom-
position of Eq. [4] into Egs. [7] and [8]. The major benefit of
this method is higher efficiency in a single-layer gradient
coil. One tradeoff is that higher efficiency usually results
in more compact wire patterns, leading to increased coil
inductance. In practice, the inductance in a single-layer
gradient coil of the size described here is not a major
concern. However, power consumption is a serious con-
cern in small-sized gradient coils. High efficiency can, to
some extent, alleviate power consumption problems, since
for a given gradient strength, the current is inversely pro-
portional to the efficiency m, and power consumption is
approximately proportional to 1/v”. In this implementa-
tion, we were motivated to design a high-efficiency gradi-
ent coil for high-resolution fMRI and no constraints on
inductance and power were included. If inductance and
power need to be optimized the error function in Eq. [2]
can be modified to include them with proper weightings,
as described by Wong et al. (3). However, in this case
gradient uniformity and efficiency are generally compro-
mised (1,3).

Spatial resolution, temporal resolution, and signal-to-
noise ratio (SNR) are limiting factors in fMRI. Single-shot
EPI has been widely applied in fMRI for high temporal
resolution imaging. However, the spatial resolution is lim-
ited due to T% decay. K-space interleaving can improve
spatial resolution but compromises temporal resolution
(25). With this high-efficiency gradient coil, we were able
to decrease the FOV while increasing data acquisition
bandwidth. Smaller FOV allows fewer k-space lines to be
acquired for a given resolution, which improves temporal
resolution; higher data acquisition bandwidth permits
shorter data acquisition times, which reduces distortion
with improved SNR. Half k-space EPI permits short TE,
which further improves the SNR. Using this gradient coil
combined with a two-shot half k-space EPI sequence, we
have detected BOLD response at a resolution of 156 X
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156 X 2000 pm® with a temporal resolution of 2 sec, as
shown in Fig. 6, which would otherwise be very difficult
to obtain without this high gradient strength.

For gradient coil design under the same conditions, the
analytical methods and the numerical optimization meth-
ods should ideally result in the same solution. The major
advantage of the numerical optimization method is the
flexibility of working in real space (instead of Fourier
space) without strong geometric constraints. These meth-
ods are suitable for designing coils of irregular geometries,
very few turns of wire, and very short dimensions, such as
the sandwich gradient coil.
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