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The discovery of functional MRI (fMRI), with the first papers appearing in 1992, gave rise to new categories of
data that drove the development of new signal-processing strategies. Workers in the field were confronted
with image time courses, which could be reshuffled to form pixel time courses. The waveform in an active
pixel time-course was determined not only by the task sequence but also by the hemodynamic response
function. Reference waveforms could be cross-correlated with pixel time courses to form an array of cross-
correlation coefficients. From this array of numbers, colorized images could be created and overlaid on anatom-
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Cross-correlation coefficient ical images. An early paper from the authors' laboratory is extensively reviewed here (Bandettini et al., 1993.
fMRI/fcMRI Magn. Reson. Med. 30:161-173). That work was carried out using the vocabulary of vector algebra. Cross-

correlation methodology was central to the discovery of functional connectivity MRI (fcMRI) by Biswal et al.
(1995. Magn. Reson. Med. 34:537-541). In this method, a whole volume time course of images is collected
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while the brain is nominally at rest and connectivity is studied by cross-correlation of pixel time courses.

© 2011 Elsevier Inc. All rights reserved.
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Introduction The story begins with an abstract that we presented at that wonderful

In January 1993, Bandettini, Jesmanowicz, Wong, and Hyde sub-
mitted a paper for publication in Magnetic Resonance in Medicine
titled, “Processing Strategies for Time-Course Data Sets in Functional
MRI of the Human Brain (Bandettini et al., 1993).” This paper, which
has been cited more than 1000 times, reaches this conclusion: “The
most effective method for image processing involves thresholding
by shape as characterized by the correlation coefficient of the data
with respect to a reference function followed by formation of a
cross-correlation image.” In the present article, we attempt to recon-
struct the early history of the cross-correlation method in fMRI—noting
that we were at the same time developing image processing tools based
on cross-correlation that played a central role in the discovery of func-
tional connectivity MRI (fcMRI) in 1995 by Biswal et al. (1995).
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San Francisco meeting of ISMRM in 1991 where fMRI suddenly appeared
(Jesmanowicz et al, 1991). In this abstract, Andrzej Jesmanowicz
addressed the problem of computation of Ty, T, and diffusion coefficient
images using the primitive computers of the day. Trial vectors were pro-
duced from trial exponential functions. Each exponential curve was
represented as a vector. Each point of each curve was represented as
one component in N dimensional space. About 200 normalized trial vec-
tors were predefined, representing different time constants in a prede-
termined range. For each experimental vector, which need not be
normalized and which is very sparse, the scalar, or dot, product was
formed with each of the 200 predefined vectors. The best match was
that particular trial vector that yielded the maximum value of the scalar
product—or, graphically, the maximum value of the projection of the
experimental vector onto a predefined vector. The text of the abstract
goes on to state that one can show this procedure is mathematically
equivalent to minimization of the least square difference between a nor-
malized experimental exponential curve and the trial exponential. The
point of the abstract was that the new method was computationally
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efficient. Andrzej later came to realize that the method was also equiva-
lent to maximization of the cross-correlation of an experimental vector
with a reference vector, but the path took a few turns since we were
dealing not with a cleanly posed mathematical problem but with novel
and poorly understood data from the human brain.

An early experiment

One of the elegant experiments that Peter A. Bandettini and Eric C.
Wong did was asynchronous bilateral finger-tapping. The experiment
is described in Bandettini et al. (1993) and is summarized here. The
paradigm involves on/off frequencies of 0.05 Hz for finger movement
of the left hand and 0.08 Hz for finger movement of the right hand!
Fig. 1 shows the timing at the top and representative pixel time
courses from the finger representations of the right and left cortices
(Fig. 1a). It also shows, in Fig. 1b, the Fourier transforms (FT) of the
waveforms in Fig. 1a. As expected, strong peaks are seen at 0.05 and
0.08 Hz in the FT displays. Images were formed from the intensities
of these peaks, which are shown in Fig. 2.

It is known that plotting the intensity of one frequency of the FT of
a time series is equivalent to phase sensitive detection of the time se-
ries at the specified frequency, and phase sensitive detection had
been of interest to Jim Hyde since his earliest years of research in
EPR spectroscopy. That would be 1954. Jim was truly delighted with
the experiment.
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Fig. 1. Plots from the left and right pixels of the motor cortex in the asynchronous bi-
lateral finger-tapping experiment. At the top is the activation paradigm that involves
on/off frequencies of 0.05 Hz for finger movement of the left hand and of 0.08 Hz for
finger movement of the right hand. (A) Plots in boxes A and B correspond closely
with left and right finger movements, respectively. (B) Plots of the spectral density ver-
sus frequency from the pixels in boxes A and B, which reveal peaks at the activation
frequencies that correspond also to the left- and right-hand activation frequencies, re-
spectively.

Reprinted from Bandettini et al., 1993. Magn. Reson. Med. 30:161-173, where it originally
appeared as Fig. 13.

Fig. 2. Functional images obtained from the Fourier transform data set of Fig. 1 in which
finger movement of the left and right hands was at on/off frequencies of 0.05 and
0.08 Hz, respectively. (A) Spectral density image at 0.08 Hz reveals high signal intensity
in the left motor cortex. (B) Spectral density image at 0.05 Hz reveals high signal intensity
in the right motor cortex.

Reprinted from Bandettini et al., 1993. Magn. Reson. Med. 30:161-173, where it originally
appeared as Fig. 14.

In fact, the phase sensitive detector was invented by R.H. Dicke
in 1946 (Dicke, 1946), the year that NMR was discovered. The
paper, however, has very little detail. Dr. E.M. Purcell, who shared
the Nobel Prize with F. Bloch for the discovery of NMR, was ac-
knowledged in Dicke's paper. Magnetic field modulation followed
by RF detection and phase sensitive detection was used in the
early NMR experiments at Harvard. The full circuit was provided
in N. Bloembergen's dissertation two years later (Bloembergen,
1948, 1961). One can also find indications that phase sensitive
detection was used not only by the Bloch group at Stanford
(Anderson, 1960) but also two years earlier in 1944 by Zavoisky
in the discovery of EPR in Kazan (Kochelaev and Yablokov, 1995).
Modulation followed by phase sensitive detection is deeply embed-
ded in the history of magnetic resonance. Square-wave modulation
in a block-design fMRI experiment was not unlike field modulation
in an NMR or EPR experiment. The fMRI block design experiment is
actually “amplitude modulation,” and the field modulation experi-
ment is actually “frequency modulation.” Phase sensitive detection
is blind to the difference. It just picks out one frequency in the time
series.

Phase sensitive detection originally provided an output for graphic
display of the correlation of an experimental waveform with a sinu-
soidal waveform. In fMRI, we have an image time course composed
of thousands of pixel time courses. Data are digitized and available
for analysis in a seemingly endless variety of ways. We can cross-
correlate if we wish, in the way that Peter and Eric did in the experi-
ment described above, but more was possible, which was the thrust
of Bandettini et al. (1993).

The cross-correlation method

During 1993, we finally recognized that we were developing the
“cross-correlation method” for analysis of fMRI. We were drowning
in data, and automated image processing tools were desperately
needed. Each pixel time course was represented as a vector. The
cross-correlation coefficient (CC) was defined (Eq. (1)) and recast in
vector notation (Eq. (2)).
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Bandettini et al. (1993) provides intermediate steps linking Eqs. (1)
and (2).

In a first step in signal processing, the constant average value of
the reference vector was removed by the process of vector orthogo-
nalization, and a projection was made on the normalized reference
vector. In this way, a time course was obtained for each pixel that
was a measure of the amount of neuronal activity in a given voxel.
The correlation coefficient itself was used as a threshold to make a de-
cision about displaying the functional value. In addition, a computer
program was developed that could remove unwanted ramps (i.e., lin-
ear drifts) from the time course—yes, again by a process of vector or-
thogonalization. It was called FIM for functional imaging. Eric Wong
followed up on a suggestion of Jim Hyde and developed the functional
display (FD) program: an array of squares that mapped into an array
of pixels. In each square, the pixel time course was displayed. Bob
Cox combined FIM and FD and called it “FD2”. Bob notes in his article
in this issue that he almost called AFNI “FD3” until he came to his
senses.

A controversy arose over what reference vector should be used.
Hypothesis-driven research would mandate that the reference vector
be a square wave since the task was always on and off, in equal pe-
riods, and we were testing the hypothesis that the brain was respond-
ing in accordance with the task. It was soon recognized, however, that
the response of the brain was filtered through the somewhat sluggish
hemodynamic response function. Quite beautiful images could be
made using a reference vector that was created from this function.
But to make an image using a reference vector formed from the
data itself seemed illogical, and statistically unsound.

Consider, as an example, synchronous bilateral finger-tapping
data. If we cross-correlate with a boxcar, images from troughs and
peaks of the fMRI response are simply subtracted. The dot product
of a box-car waveform and a pixel time course is essentially the
same as averaging all images during the interleaved activation pe-
riods and subtracting from an average of the corresponding inter-
leaved resting-state periods. Because all images in the time course
are used, the contrast-to-noise increases, even though the actual
pixel responses do not represent box-car waveforms.

As an alternative to use of a boxcar, one can use a reference wave-
form based on the experimental hemodynamic response function of
one strongly responding pixel. The image quality is improved com-
pared with use of a simple boxcar because the reference vector
more closely approximates the actual response vector and the dot
products are higher. A potential difficulty with this approach, howev-
er, is that various artifacts related to task-correlated motion or vessel
pulsatility may be enhanced.

Still another approach is to create a time-averaged hemodynamic
response function from one or more strongly responding pixel time
courses, and then replicate it as many times as necessary to match
the pixel time-course vectors. The image quality is found to be slightly
improved.

It is also possible to use a non-periodic boxcar since the cross-
correlation method does not require a periodic reference waveform
to create the reference vector.

In preparation of this article, we reviewed the history of cross-
correlation. The correlation coefficient itself was introduced by Sir
Francis Galton, an English doctor, explorer, and statistician in 1869
(see Upton and Cook, 2008). He was a cousin of Charles Darwin.
The primary use was studying random-like processes that exhibit
similarity in their behavior or occurrence. A good example would be
the temperature of the air, which is no doubt correlated with seasons.
The question was, by how much? This correlation was known as long
as human history but no number had been given until the 19th

century. The formal definition of the correlation coefficient was
given in the form:

c_ Cov(X,Y) 3)
—NVar(X)Var(Y)’

It seems somewhat obscure. It would take a half page to explain Cov
(X)Y) and Var(X) terms. One can find the details in Oxford's A Dictionary
of Statistics (Upton and Cook, 2008).

Correlation statistics applies well to processes that are indepen-
dent of time. Finding the correlation between the forearm and a
child's age can be done in any order of time and any order of age.
By contrast, time-ordered correlation cannot be studied randomly.
Time-ordered correlation was introduced in the surprisingly late
year of 1926 by the Scottish statistician George Udny Yule (see
Upton and Cook, 2008). He was concerned with a periodic time series
that was obscured by noise. Yule introduced the concept of autocorre-
lation, which found immediate application, even before computers
became popular. If a priori information exists about the periodicity,
the autocorrelation method is appropriate.

Discussion

The principles of bandwidth management, data collection, and
digital filtering were discussed in an early publication by Klein and
Barton (1963). To paraphrase this work: if noise is white and two
spectra are compared, the first acquired in a single scan in time T
with an integrating time constant 7 and the second acquired by sum-
ming n spectra, each acquired in time T/n with integrating time con-
stant 7/n, the SNRs will be the same. However, if the noise has a 1/f
character, the latter method will exhibit lower noise. In the present
context, it is important that digital filters be applied prior to calcula-
tion of the cross-correlation coefficient. It should be recognized that
the data are inherently complex valued, and complex valued digital
filters are therefore appropriate.

The cross-correlation method is widely applied in fcMRI, but the
problems are daunting. If there are N pixel time courses in an image
time course data set, there are N? cross-current coefficient images
that can be formed. Strategies to reduce the size of functional connec-
tivity data sets include the following: restriction of the pixels-of-
interest to gray matter; restriction to networks-of-interest; restric-
tion to areas defined by an fMRI task, which we call fMRI-driven
fcMRI; and restriction to histologically defined regions as reported
in an atlas. The latter approach is particularly helpful: regions are de-
fined, average resting-state time courses are formed, and the regional
pairwise correlation-coefficient (RPCC) matrix is formed (Pawela
et al., 2008).
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